Generalized Fibonacci numbers and Blackwell’s renewal theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers

In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 132, 213, and 123 is equal to the Fibonacci number Fn+1. We use generating function and bijective techniques to give other sets of pattern-avoiding permutations which can be enumerated in terms of Fibonacci or k-generalized Fibonacci numbers.

متن کامل

GENERALIZED q - FIBONACCI NUMBERS

We introduce two sets of permutations of {1, 2, . . . , n} whose cardinalities are generalized Fibonacci numbers. Then we introduce the generalized q-Fibonacci polynomials and the generalized q-Fibonacci numbers (of first and second kind) by means of the major index statistic on the introduced sets of permutations.

متن کامل

Generalized (k, r)–Fibonacci Numbers

In this paper, and from the definition of a distance between numbers by a recurrence relation, new kinds of k–Fibonacci numbers are obtained. But these sequences differ among themselves not only by the value of the natural number k but also according to the value of a new parameter r involved in the definition of this distance. Finally, various properties of these numbers are studied.

متن کامل

Fibonacci numbers and Fermat ’ s last theorem

numbers. As applications we obtain a new formula for the Fibonacci quotient Fp−( 5 p )/p and a criterion for the relation p |F(p−1)/4 (if p ≡ 1 (mod 4)), where p 6= 5 is an odd prime. We also prove that the affirmative answer to Wall’s question implies the first case of FLT (Fermat’s last theorem); from this it follows that the first case of FLT holds for those exponents which are (odd) Fibonac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2012

ISSN: 0167-7152

DOI: 10.1016/j.spl.2012.05.003